GPS tracking of Leisler's bat reveals important information for mitigating measures at wind power plants

René Janssen, Robert Delbroek, Daan Dekeukeleire, Ruben Evens, Frank Gerards, Aegidia van Grinsven, Dina Dechmann & Bart Kranstauber

rene@bionetnatuur.eu

Process and their earlier presentations

Some repetition, new analyses and new data and

- Beerssel (2019)
- VLEN-dag Utrecht (2019)
- Oostende (2020)
- EBRS (2021)

In English, because... Some Flemish guys don't understand my Dutch,

et je ne parle pas français; und auf Deutsch verstehen es nur wenige...

Leisler's bat (Nyctalus leisleri)

- Bosvleermuis or Noctule de Leisler
- Very low numbers of found colonies in Wallonia
- Rare and threatened in Flanders
 - Tree roosting species
 - Batdetector observations in all regions
 - Maternity roosts in the south
 - 9 known colonies in Flemish Limburg!

Alcalde et al., 2013 Le Rhinolophe Waarnemingen.be & Janssen R. (in prep)

Bats and wind turbines

- Wind turbines cause highest mortality late summer & autumn
- Mostly victims by low winds and warm nights
 - Factors behind this still unclear
- Open-landscape foragers most vulnerable

Rydell et al. (2010) Eur J Wild Res; Alcade et al (2012); Rodrigues et al. (2014) Eurobats

Foraging behaviour

- Movement behaviour not well known
- VHF radio tracking studies UK and Ireland fly up to 14 km
 - No height data
- \Rightarrow Difficult to follow!
- \Rightarrow Few data, especially in late summer

Victims depends on foraging behaviour of Leisler's bats?

Waters et al. (1999) J. Zoology; Shiel et al. (2001) J. Zoology

- Recently: small GPS loggers incl battery: < 1 gr
 - Precise location
 - Altitude
 - Need to recover tag
- Tracking studies possible with bigger species
 - Noctules, Free-tailed bat...

GPS tagging in Flanders, Belgium

- Nearly flat area (60-90 m asl) north of Tongeren (Tongres)
- Mid of August 2018
- Collar with GPS-tag and beeper tag (~1.2 gram)
 - Only fixes outside the roost
 - 8% of body mass
 - Location fix every 10 min

9 bats tagged, 6 tags back

- 9 bats tagged
- 6 tags recovered after 3 days or later
 - (3♀ad; 2♀juv; 1♂juv)
 - 2-4 (6) nights of data
 - 1 vhf tag stopped; 2 escaped during recapture
- 25 tracking nights

Leisler's bats fly fast!

- On average ca. 15 km/h (between fixes of 10min)
- Up to 67 km/h

Leisler's bat fly far!

- All 6 bats fly far
 - Up to 48 km (direct line)
 - Routes of more than 100 km
- 30% of fixes in 7.5km around the roost
- Sometimes area-restricted foraging for 1.5 hour

They fly high

Together stay low or go high

- Same time:
 - all go high or stay low
- Same region
 - but ~5-40 km away from each other
- Split = 120m agl

All 9 nights same pattern

Leisler's bat fly high!

- Up to 1054m agl
- Uplift unlikely
- Swept area

Bimodal system (stay low or go high)

- Bimodal distributed
 - Mean¹: 67m agl
 - Mean²: 379m agl
- Split: 120 meter agl

Danger zone is not only a sum of distribution (also attraction is playing a role!)

When there is advantageous wind for insect migration, bats forage at high altitudes?

- Bird migration ≈ direction insect migration
 - Western Europe ca 30°
- Wind support \rightarrow direction in m/s 30° (from NNE to SSW)
- Annotation ECMWF wind data set at 950 mBar = ~550 m agl

Nilsson et al., 2019. Ecography

Shi et al. (2021) Remote Sensing; Nilsson et al. (2019) Ecography

Beneficial wind for insect migration

- Significant correlation wind support 30° (from NNE to SSW)
- Randomisation test ECMWF dataset 1980-2020 (by 100 permutations)

→ not a factor by chance
 (Corrected for individual effects and temperal autocorrelation

NL: Wind speed by Leislers' high mounted detectors

- Four detectors four months on height

NL: First glimps during lactation – 't Hout

NL: First glimps during lactation – De Doort

NL: First glimps during lactation - Aerwinkel

- Movements 3 Leisler's
- Between 11 & 15 juli 2021

Conclusions

- Long flight distances daily. Increased chance to encounter turbines or become attracted & could be killed by turbines
- Leisler's fly high by NNE wind; same conditions as insect migration (partly in rotor swept area)
- Leisler's stay low (under 120m) by SSW wind (mostly in rotor swept area)
- Third of the time in swept area of wind turbines; in danger by both wind conditions.

Roeleke et al. (2016) Sci Rep; Hu et al. (2016) Science; Shi et al. (2021) Remote Sensing

- Collisions risks by migratory species not only by migration! Fly further than known or expected.
- This bimodal system also in other seasons with detour flight. How is this in other species?
- Value bat detector recording? What does it measure (and miss) at ground/ tower/ nacelle height?
- Getting behaviour data is important for understanding and protecting bats

Rydell et al. (2010) Eur J Wild Res; Voigt et al. (2021) Mammal Review

Thanks!

- Funding: ANB for Flemish project
- Funding Gemeente Echt-Susteren for Dutch data
- Paul Voskamp for helping with fieldwork
 Jens Rydell, James Chapman, Birgen
 Haest & Felix Liechti for discussion about
 insect migration and bats
- the whole project team for all help

All tagged Leisler's bats fly high!

- On average ca. 300m
- Up to 1150 m asl (!)
- Flying at Wind turbine rotor height

